Steel surface defect detection based on Improved YOLOX Algorithm
نویسندگان
چکیده
Abstract As one of the very common industrial products, strip steel plays a important role in various fields. Steel production has received extensive attention. In production, scratches are unavoidable due to numerous forces beyond human control. Cracks and other flaws appear, their presence direct impact on product’s quality. Therefore, it is great significance develop efficient accurate surface defect detection. this study, most widely used metal material selected as research object, its detection problem studied accordingly. The activation function loss improved basis YOLOX model. Resolve overexposure content distortion image caused by high reflecting characteristics strip, which degrades quality, embedding sub-attention mechanism enhance regional hidden small targets. experimental results show that mAP model for surfaces 80.7%, 4.1% higher than original algorithm, can reduce false missed rate defects.
منابع مشابه
A High - Accuracy Algorithm for Surface Defect Detection of Steel Based on DAG - SVM
The quality of the steel surface is a crucial parameter. An improved method based on machine vision for steel surface defects detection is proposed. The experiment is based on 20 images for each of 6 distinct steel defects, a total of 120 defective images achieved from the detection system. 128 different features are extracted from the images and feature dimensions are reduced by the principle ...
متن کاملResearch on the Fabric Defect Detection Method based on Improved PSO and NN Algorithm
This paper can reasonably identify the connection weight and threshold of NN and improve capability of true problem solution. This paper also applies PSO-BP NN model into classification of fabric flaws, decomposes the fabric image at single layer and extract the sub-image in horizontal and vertical direction to represent longitudinal and latitudinal texture by using orthogonal wavelet transform...
متن کاملSurface Defect Detection with Histogram - Based
In this paper the performance of two histogram-based texture analysis techniques for surface defect detection is evaluated. These techniques are the co-occurrence matrix method and the local binary pattern method. Both methods yield a set of texture features that are computed from a small image window. The unsupervised segmentation procedure is used in the experiments. It is based on the statis...
متن کاملAN IMPROVED INTELLIGENT ALGORITHM BASED ON THE GROUP SEARCH ALGORITHM AND THE ARTIFICIAL FISH SWARM ALGORITHM
This article introduces two swarm intelligent algorithms, a group search optimizer (GSO) and an artificial fish swarm algorithm (AFSA). A single intelligent algorithm always has both merits in its specific formulation and deficiencies due to its inherent limitations. Therefore, we propose a mixture of these algorithms to create a new hybrid optimization algorithm known as the group search-artif...
متن کاملOPTIMAL SENSOR PLACEMENT FOR MODAL IDENTIFICATION OF A STRAP-BRACED COLD FORMED STEEL FRAME BASED ON IMPROVED GENETIC ALGORITHM
This paper is concerned with the determination of optimal sensor locations for structural modal identification in a strap-braced cold formed steel frame based on an improved genetic algorithm (IGA). Six different optimal sensor placement performance indices have been taken as the fitness functions two based on modal assurance criterion (MAC), two based on maximization of the determinant of a Fi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Journal of physics
سال: 2023
ISSN: ['0022-3700', '1747-3721', '0368-3508', '1747-3713']
DOI: https://doi.org/10.1088/1742-6596/2467/1/012005